extension | φ:Q→Out N | d | ρ | Label | ID |
(C3xD4).1C23 = C2xD8:3S3 | φ: C23/C2 → C22 ⊆ Out C3xD4 | 96 | | (C3xD4).1C2^3 | 192,1315 |
(C3xD4).2C23 = D8:13D6 | φ: C23/C2 → C22 ⊆ Out C3xD4 | 48 | 4 | (C3xD4).2C2^3 | 192,1316 |
(C3xD4).3C23 = C2xS3xSD16 | φ: C23/C2 → C22 ⊆ Out C3xD4 | 48 | | (C3xD4).3C2^3 | 192,1317 |
(C3xD4).4C23 = C2xQ8:3D6 | φ: C23/C2 → C22 ⊆ Out C3xD4 | 48 | | (C3xD4).4C2^3 | 192,1318 |
(C3xD4).5C23 = C2xD4.D6 | φ: C23/C2 → C22 ⊆ Out C3xD4 | 96 | | (C3xD4).5C2^3 | 192,1319 |
(C3xD4).6C23 = C2xQ8.7D6 | φ: C23/C2 → C22 ⊆ Out C3xD4 | 96 | | (C3xD4).6C2^3 | 192,1320 |
(C3xD4).7C23 = SD16:13D6 | φ: C23/C2 → C22 ⊆ Out C3xD4 | 48 | 4 | (C3xD4).7C2^3 | 192,1321 |
(C3xD4).8C23 = S3xC4oD8 | φ: C23/C2 → C22 ⊆ Out C3xD4 | 48 | 4 | (C3xD4).8C2^3 | 192,1326 |
(C3xD4).9C23 = SD16:D6 | φ: C23/C2 → C22 ⊆ Out C3xD4 | 48 | 4 | (C3xD4).9C2^3 | 192,1327 |
(C3xD4).10C23 = D8:15D6 | φ: C23/C2 → C22 ⊆ Out C3xD4 | 48 | 4+ | (C3xD4).10C2^3 | 192,1328 |
(C3xD4).11C23 = D8:11D6 | φ: C23/C2 → C22 ⊆ Out C3xD4 | 48 | 4 | (C3xD4).11C2^3 | 192,1329 |
(C3xD4).12C23 = D8.10D6 | φ: C23/C2 → C22 ⊆ Out C3xD4 | 96 | 4- | (C3xD4).12C2^3 | 192,1330 |
(C3xD4).13C23 = D8:4D6 | φ: C23/C2 → C22 ⊆ Out C3xD4 | 48 | 8- | (C3xD4).13C2^3 | 192,1332 |
(C3xD4).14C23 = D8:5D6 | φ: C23/C2 → C22 ⊆ Out C3xD4 | 48 | 8+ | (C3xD4).14C2^3 | 192,1333 |
(C3xD4).15C23 = D8:6D6 | φ: C23/C2 → C22 ⊆ Out C3xD4 | 48 | 8- | (C3xD4).15C2^3 | 192,1334 |
(C3xD4).16C23 = S3xC8.C22 | φ: C23/C2 → C22 ⊆ Out C3xD4 | 48 | 8- | (C3xD4).16C2^3 | 192,1335 |
(C3xD4).17C23 = D24:C22 | φ: C23/C2 → C22 ⊆ Out C3xD4 | 48 | 8+ | (C3xD4).17C2^3 | 192,1336 |
(C3xD4).18C23 = C24.C23 | φ: C23/C2 → C22 ⊆ Out C3xD4 | 48 | 8+ | (C3xD4).18C2^3 | 192,1337 |
(C3xD4).19C23 = SD16.D6 | φ: C23/C2 → C22 ⊆ Out C3xD4 | 96 | 8- | (C3xD4).19C2^3 | 192,1338 |
(C3xD4).20C23 = C2xD12:6C22 | φ: C23/C22 → C2 ⊆ Out C3xD4 | 48 | | (C3xD4).20C2^3 | 192,1352 |
(C3xD4).21C23 = C22xD4.S3 | φ: C23/C22 → C2 ⊆ Out C3xD4 | 96 | | (C3xD4).21C2^3 | 192,1353 |
(C3xD4).22C23 = C2xQ8.13D6 | φ: C23/C22 → C2 ⊆ Out C3xD4 | 96 | | (C3xD4).22C2^3 | 192,1380 |
(C3xD4).23C23 = C12.C24 | φ: C23/C22 → C2 ⊆ Out C3xD4 | 48 | 4 | (C3xD4).23C2^3 | 192,1381 |
(C3xD4).24C23 = C2xQ8.14D6 | φ: C23/C22 → C2 ⊆ Out C3xD4 | 96 | | (C3xD4).24C2^3 | 192,1382 |
(C3xD4).25C23 = D12.32C23 | φ: C23/C22 → C2 ⊆ Out C3xD4 | 48 | 8+ | (C3xD4).25C2^3 | 192,1394 |
(C3xD4).26C23 = D12.33C23 | φ: C23/C22 → C2 ⊆ Out C3xD4 | 48 | 8- | (C3xD4).26C2^3 | 192,1395 |
(C3xD4).27C23 = D12.34C23 | φ: C23/C22 → C2 ⊆ Out C3xD4 | 48 | 8+ | (C3xD4).27C2^3 | 192,1396 |
(C3xD4).28C23 = D12.35C23 | φ: C23/C22 → C2 ⊆ Out C3xD4 | 96 | 8- | (C3xD4).28C2^3 | 192,1397 |
(C3xD4).29C23 = C2xQ8oD12 | φ: C23/C22 → C2 ⊆ Out C3xD4 | 96 | | (C3xD4).29C2^3 | 192,1522 |
(C3xD4).30C23 = C6.C25 | φ: C23/C22 → C2 ⊆ Out C3xD4 | 48 | 4 | (C3xD4).30C2^3 | 192,1523 |
(C3xD4).31C23 = D6.C24 | φ: C23/C22 → C2 ⊆ Out C3xD4 | 48 | 8- | (C3xD4).31C2^3 | 192,1525 |
(C3xD4).32C23 = S3x2- 1+4 | φ: C23/C22 → C2 ⊆ Out C3xD4 | 48 | 8- | (C3xD4).32C2^3 | 192,1526 |
(C3xD4).33C23 = D12.39C23 | φ: C23/C22 → C2 ⊆ Out C3xD4 | 48 | 8+ | (C3xD4).33C2^3 | 192,1527 |
(C3xD4).34C23 = C2xC6xSD16 | φ: C23/C22 → C2 ⊆ Out C3xD4 | 96 | | (C3xD4).34C2^3 | 192,1459 |
(C3xD4).35C23 = C6xC4oD8 | φ: C23/C22 → C2 ⊆ Out C3xD4 | 96 | | (C3xD4).35C2^3 | 192,1461 |
(C3xD4).36C23 = C6xC8.C22 | φ: C23/C22 → C2 ⊆ Out C3xD4 | 96 | | (C3xD4).36C2^3 | 192,1463 |
(C3xD4).37C23 = C3xD8:C22 | φ: C23/C22 → C2 ⊆ Out C3xD4 | 48 | 4 | (C3xD4).37C2^3 | 192,1464 |
(C3xD4).38C23 = C3xD4oD8 | φ: C23/C22 → C2 ⊆ Out C3xD4 | 48 | 4 | (C3xD4).38C2^3 | 192,1465 |
(C3xD4).39C23 = C3xD4oSD16 | φ: C23/C22 → C2 ⊆ Out C3xD4 | 48 | 4 | (C3xD4).39C2^3 | 192,1466 |
(C3xD4).40C23 = C3xQ8oD8 | φ: C23/C22 → C2 ⊆ Out C3xD4 | 96 | 4 | (C3xD4).40C2^3 | 192,1467 |
(C3xD4).41C23 = C6x2- 1+4 | φ: trivial image | 96 | | (C3xD4).41C2^3 | 192,1535 |
(C3xD4).42C23 = C3xC2.C25 | φ: trivial image | 48 | 4 | (C3xD4).42C2^3 | 192,1536 |